
INTENSIFIED DIRECTIVITY OF GAS DISPERSAL AS A RESULT OF RADIATION 

ENERGY LOSS 

I. V. Nemchinov and A. I. Yurchenko UDC 533.6.011.72 

Exact particular solutions of equations of dynamics [I, 2] which hold for special ini- 
tial conditions (motion with a linear velocity distribution or with uniform deformation), 
are used extensively to obtain information of good quality about the nature of the dispersal 
of one-, two-, or three-dimensional gas volumes into a vacuum and quantitative estimates [3- 
5]. On the basis of solution (2) in [3-5] we considered the adiabatic dispersal of a gas 
ellipsoid into a vacuum with different ratios of the initial dimensions of this ellipsoid 
along its axes, including the highly elongated (acicular) or highly compressed (disk-shaped) 
case. The acceleration is greater along the minor axis than along the major axis since the 
pressure gradient is greater. The values of the acceleration along the axes become compar- 
able when the dimension of the cloud is of the same order of magnitude along all axes. By 
that time, however, the velocities along the minor axis can be much higher than along the 
minor axis and the reserve of thermal energy as a result of adiabatic cooling is insignifi- 
cant, the pressure is much lower than the initial value, and further dispersal cannot change 
the velocity ratio. The dispersal, therefore, is directional and the ratios of the ellipsoid 
directions in the inertial stage of the dispersal are reversed, i.e., the major axis becomes 
the minor axis. 

The directivity of the dispersal intensifies upon transition to a very long needle or 
a very thin disk (foil) and with increasing adiabatic exponent y. The explanation for the 
latter is that the higher ~ is, the more rapidly the pressure p and the internal energy e of 
a unit mass drop as the density p decreases. Conversely, as shown in [3] an input of energy 
reduces the directivity; the ellipsoid heated up in the process becomes rounder. 

Interest in problems of gas dispersal into a vacuum has recently been rekindled [1-5] 
in relation to a number of practical applications [6-8], including the gradual distillation 
of an evaporating foil by intense laser radiation, high-power electron or ion beams, or a 
pulse of electric current. At high plasma temperatures the thermal radiation of the plasma 
becomes a significant factor [9, i0], which can cause more rapid cooling than in the adia- 
batic case and, therefore, intensify the directivity of the dispersal. 

If the pulse from a laser or another external energy source is short (in comparison 
with the dispersal and radiation time), its role comes down to merely setting the :initial 
temperatures and velocities; without specifying the method of heating the plasma, therefore, 
we can consider the problem of plasma dispersal into a vacuum with given initial parameters. 

In the case of the dispersal of thin foils, heated and/or distilled by the above meth- 
ods, even in the initial stage of heating and distillation the thickness of the foil is usu- 
ally less than the mean free path of the emitted radiation. If this is not satisfied from 
the very beginning, then as the dispersal proceeds the plasma bunch gradually becomes less 
dense and transparent or semitransparent for its own thermal radiation. The volume energy 
loss is written as 

! = 4•176 (i) 

(f is the energy loss of a unit mass pe r unit time, T is the temperature, o is the Stefan- 
Boltzmann constant, and Kp is the Planck-averaged mass coefficient of absorption). If the 

transparency condition is satisfied for some, but not all, wavelengths and part of it is re- 
absorbed, we can use the approximation of quasi-volume luminescence [9-11], when as before 
the energy loss is given by (I), but the effective mass coefficient of absorption K e appears 
instead of Kp: f = 4KeOT 4. The value of K e with allowance for reabsorption is determined 
by solving the spectral transport equation for all frequencies in a uniformly heated layer 
of gas at the given temperature T and density p and for the characteristic dimension R of 
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the bunch or its specific mass m = pR for the minor axis of the ellipsoid. The quantity <e 
corresponds to the real value of the blackness of the gas. We note that for a plasma that 
has been ionized repeatedly, but not fully, Ce can be several orders of magnitude smaller than 
Kp [Ii]. 

We write the equation for the volume or quasivolume energy loss 

ae/at  § pay~at = - - 1  (2) 

[v i s  the  s p e c i f i c  volume (v = p - z ) ] .  Suppose t h a t  f i s  a power-law f u n c t i o n  of  the  thermo- 
dynamic parameters: 

] = Fe-=p~ : Fe-=v-~.  

We write the equation of state as 

e = p v / ( ? - -  1) 

(~ i s  the  e f f e c t i v e  a d i a b a t i c  exponen t ) .  

(3) 

(4) 

For aluminum in the range T = 10-120 eV we can assume that K ~ T-3v -2/3, with e ~ T 3/2 
[ii] and, therefore, in the given case a ~ -2/3, ~ = 2/3, and 7 = 1.2. 

We consider the three-dimensional motion of a gas. The equations of motion and conti- 
nuity for the Lagrange variables in the Cartesian coordinate system have the form 

Ou~/Ot + vOp/Oxi = 0 (i = 1, 2, 3), 
v (~n, t) azl, ax2, 0% 
v ( ~ ,  o) = a~ 1, o~, a~ n' OxdOt = ui, (5) 

where x i is the Eulerian coordinate (x i = xi(t, $n), n = i, 2, 3); $i is the Lagrange coordi- 
nate of the point ($i = xi(0)); ui is the velocity of the Lagrangian point ~i with coordi- 
nates x i in the Eulerian system. System (2)-(5) can be reduced to a dimensionless form by 
the transformation 

t 

ui = u , u i ,  v = v , v t ,  e = e , e ' ,  
t ! 

t = t , t ' , ,  p = p ,p ' , ,  x ~ =  x ,x~ ,  ~i = x , ~ i ,  [ =  ] ,J '  
(6) 

(the primes label dimensionless quantities). Only three of the eight dimensional factors 
are independent. We choose the following characteristic parameters as the independent pa- 
rameters: x, = ($i~ is the minimum dimension of the volume under consideration (for a 
foil, its thickness), p, is the initial pressure in the plasma, and v, is the initial spe- 
cific volume. The other quantities are determined by 

e ,  = p , v . ~  u .  = ] / ~ , ,  t .  = x . ~ . ,  ] .  = f e T ~ v 7  ~. (7) 

We thus have the following characteristic quantities: e, is the internal energy in the ini- 
tial stage of dispersal, t, is the gasdynamic time of dispersal along the minor axis without 
allowance for the radiation loss, u, is the velocity of the jet after reaching the asymptotic 
curve, and f, is the radiation energy loss. We introduce the dimensionless parameter Q = 

/,t. Ft* i , which is the ratio of the characteristic times t, of the gasdynamic motion to 
e, e ,  ear ~ 

the luminescence time t r = e,/f,. 

Let us consider a specific example. Suppose that the dispersal of an aluminum foil 
with x, = 0.3 mm and p, = 3"10 -3 g/cm 3 occurs at T, = 120 eV. The blackness n ~ 2"10-3 [ll]. 
At e, = 104 kJ/g the time t r = 6 nsec. Since t, = 2 nsec, Q = 0.3. The radiation loss in 
this case will substantially affect the gasdynamic motion. Below we use only the dimension- 
less variables, omitting the primes. All the equations in system (2)-(5) are invariant under 
the transformations (6) and (7), except the energy equation (4), which has the form 

Oe/Ot + pOv/Ot = Qe-~v-~.  ( 8 )  
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In the general case we must solve the system (4), (5), and (8). The nature of the be- 
havior of the dispersing plasma, as determined by comparison with the results of numerical 
calculations, can be assessed, however, by using the self-similar formulation or exact par- 
ticular solutions of the respective problems. 

We assume that motion with radiation loss occurs in the so-called regular regime and 
we look for the solution of a system in separated variables: 

~ = x ~ (t) x~ ( ~ ) ,  u~ = ~ (t) u~ ( ~ ) ,  

p = p ~  v = v ~  e -~ e ~  
(9) 

It is natural to set e ~ = p~176 - i), E = PV. We assume that p0, v 0, and e ~ are the ther- 
modynamic parameters at the center of the volume under consideration, whereupon P(O) = V(0) = 

E(0) = i. Without loss of generality, we assume that xi~ = I and then Xi(~n) = gi ~ De- 
noting xi~ = ~i(t), we obtain 

d% x i d% 

cgx~ Ox 20x s OD OP pO (t) 
a~ I o~ 2 o~ 3 - q h % % ,  ~ = oh % (t).  

(lO) 

Thus, substituting (9) and (i0) into (8) and (5), we have two systems of ordinary differen- 
tial equations 

de~ pO duo 
d"-'-t -t- --~ = - -  QCe (e~ -c~ (u~ -fS, 

d2% t 
g~i dt-"'-T pov'--"3 -- Ci, v ~ = q31q)2q3 ~, e ~ = p~176 -- 1) 

(11) 

to find the time dependence as well as to determine the parameters with respect to the La- 
grange coordinate: 

(PV)-(~+x)V -~ = Ce, - - V / ~ i O P / O ~  = Ci.  ( 1 2 )  

In (ii) and (12) C e and C i are separation constants. When we choose C e = i the first equa- 
tion of (12) reduces to the form PV n = i (n = 1 + 6/(i + =)). Since dispersal occurs in a 
vacuum and at the boundary of the considered p = 0, the second group of equations is solved 
with the boundary conditions 

P(~i)l $.2/.2 i=0" (13) 
{ = 1  
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From this it follows that Ci -- 2,, 1 The distribution of the pressure, specific volume, 
n -- I ~2 " 

~0 

and internal energy is found in analytical form (it is similar to that given in [3] for the 
problem of dispersal with heating) 

p = ( i  - x 2 ) ' / "  ~ - ~ ,  V = (1 - -  x ~ ) V ( ~ - ' ) ,  

3 
2 2 

= p v  = 1 - x~,. ~ E ~ / ~ o .  
i = 1  

Here $i0 are the maximum dimensions of the ellipsoid along its axes. The velocities, as in 
[1-3], are distributed linearly with respect to the coordinates u i = ui~ (ui Q are the 
velocities of the edge of the ellipsoid along its axes). We rewrite the system, using di- 
mensionless quantities that depend only on t, omitting the superscripts of p0 and v ~ for 

convenience: 

(pfl2(~Cdt2 = 13vCi,: 

dp ~ (pv) --(~ v -f~ 
- -  v d t  "~' 

v = ~i~2~3. (].4) 

The results obtained by calculating system (14) for ~ = -2/3 and ~ = 2/3 in the case 
of axisymmetric flow in which ~2~3, i.e., for a disk-shaped ellipsoid�9 The aim of the 
numerical calculations was to determine the dependence of the plasma-jet characteristics on 
Q and n = ~3~ ~ is the degree of ellipsoid compression. We note that luminescence does 
indeed intensify the directivity. The higher Q is, the more rapidly the pressure and inter- 
nal energy decrease because of radiation and the gas manages to distill only along the minor 
axis. The explanation for this is that distillation along the major axis occurs only in the 
later stages, when the gas has already cooled. 

The calculations were carried out for various Q and q The coefficient k = ula/u2 ~ 
i.e., the ratio of velocities along the minor and major axes, was introduced to characterize 
the directivity of the dispersal�9 The graph of k(t) is shown in Fig. 1 for q = 104 (solid 
lines) and 102 (dashed line). Curves 1-5 correspond to Q = 0.02, 0.2, 0.6, 1.0, and 2.0. 
We see that k decreases uniformly as Q increases�9 The gas cools very rapidly at Q ~ 2 and 
as a result k = q. During the entire time, therefore, the dispersal takes place practically 
in the form of a flat disk. Calculations for other values of ~ showed that k grows uniform- 
ly with n at fixed values of Q. Accordingly, the asymptotic value of k(=) is higher when n 

is larger. 

Figure 2 shows the dependence of ul ~ (dimensionless velocity at the edge of the ellip- 
soid along its minor axis) on t for ~ = 104 (solid lines) and 102 (dashed lines) for the 
same values of Q as in Fig. i. The velocity ul ~ decreases with growing Q. This is because 
of the decrease in thermal energy as a result of deexcitation and because of the decrease 
in the pressure and acceleration. Comparing the analogous functions u1~ for various val- 
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ues of n at fixed values of Q, we find that at Q = 0.2 (Fig. 3, solid lines) ul ~ increases 
uniformly with q. At Q = 0.6 (dashed lines) some nonuniformity arises. Lines 1-3 corre- 
spond to n = 104, 10, and I. When the asymptotic curve is reached the velocity of a sphere 
(n = i) is higher than that of a thin foil (D >> i) - the dashed lines in Fig. 3. In the ini- 
tial stage of dispersal the velocity is higher for a thin foil than for a sphere and thus 
the sphere overtakes the foil in velocity. This is because the faster drop in density for 
the sphere decreases the intensity of luminescence at the same value of Q. 

In this problem of the dispersal of an ellipsoid (different) pressure gradients exist 
along all of its axes; the asymptotic law (with respect to time) of the density wariation 
for any ratios of the initial dimensions along different axes is the same and coincides with 
the law for a sphere (p ~ i/t3). Although the directivity effect does exist and :is very pro- 
nounced for disk shape and elongated ellipsoids, the law whereby p decreases with t is the 
same and the gain can be by only a certain number of times. This is due to the nonuniform 
distribution of the initial density and pressure, including along the major axis. 

At the same time, when a thin filament or flat foil is heated by a laser or electron 
beam with uniform irradiation the pressure along the major axis is the same along its entire 
central region for a fairly long time, until rarefaction waves arrive at the pertinent points 
from the edges of the disk. The flow in this stage is uniform, therefore in the entire cen- 
tral region of the filament or disk. At the same time, if the filament or disk is thin, the 
rarefaction wave travels rather quickly along the radius to the axis of the filament or 
along the entire thickness of the disk to its symmetry plane and a pressure and density 
gradient arises along the radius or in the direction perpendicular to the plane of the disk. 
This makes it possible to find the acoustic velocity distribution along the radius of the 
filament or the thickness of the disk as well as the law of its variation with time in a one- 
dimensional zone, i.e., the shape and temporal position of the boundary of the rarefaction 
wave. We can thus follow the process of disintegration of a one-dimensional zone. This was 
done for the adiabatic case by Smirnov [12], who noted that as the gas cools and the acoustic 
velocity decreases the advancement of the rarefaction wave slows down. Moreover, for a long 
filament the one-dimensional segment of dispersal can persist for the entire timer with its 
length increasing with the adiabatic index 7. Clearly, luminescence causes the gas to cool 
more rapidly, slows down the propagation of the rarefaction wave from the ends of the fila- 
ment or from the edges of the disk, and increases the time for which a one-dimensional dis- 
persal pattern exists. 

The highest temperature and the highest acoustic velocity, according to (13)~ are 
reached in the plane of the disk. The size R i of the region occupied by one-dimensional 
flow is defined as 

t 

R~=~l--S(t), S=  yc~ (15) 
0 

(c o is the dimensionless acoustic velocity in the plane of the disk and S is the path tra- 
versed by a rarefaction wave in a time t). Figure 4 shows S(t) for Q = 0.01, 0.02, 0.03, 
0.I, 0.2, 1.0 (lines 1-6). At large values of Q, i.e., under intensive luminescence, S be- 
comes substantially shorter and the one-dimensional segment becomes longer. The lumines- 
cence thus also intensifies the directivity of the dispersal. For a wide plane disk (q >> 
i) in the case of strong luminescence the dispersal of the central part proceeds two-dimen- 
sionally, although more slowly than in the adiabatic case. 
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LOCALIZED EXPLOSION IN A MATERIAL WITH A MAGNETIC FIELD AND THE 

CONSEQUENCES OF FINITE CONDUCTIVITY IN A MAGNETOHYDRODYNAMIC MODEL 

A. M. Bergel'son, Yu. P. Raizer, and S. T. Surzhikov UDC 538.4 

Introduction. An explosion in an empty space or a rarified gas in the presence of a 
magnetic field is the prototype of a number of natural cosmic and laboratory processes [i]; 
experimental explosions in the upper atmosphere [2, 3] have produced a stream of numerical 
and theoretical works. Magnetic retardation and conversion of plasma cloud energy with 
dispersion in an empty space has been considered in [4, 5]; in [5] this was done by numeri- 
cal solution of two-dimensional gas dynamic equations. On the basis of a hybrid model a 
study was made of collisionless interaction with a magnetized material of unidimensional 
cylindrical [6] and two-dimensional "spherical" [7] plasma clouds. A unidimensional cylin- 
drical explosion was computed in a magnetohydrodynamic approximation in [8]. 

Even without a magnetic effect a large scale explosion at a height is two dimensional 
due to the nonuniformity of the atmosphere over the vertical; detailed calculations are given 
in [9]. With the action of a magnetic field inclined to the vertical, flow becomes three- 
dimensional. Naturally, there is an increase in the difficulty of the calculation, and at 
the highest level the difficulty is aggravated for selecting a physical model (collision- 
collisionless flow, variability of ionization, etc.). Therefore, in order to understand 
these phenomena solutions for simple model problems which take account of some part of the 
actual features of the process are useful. For this purpose in the present work the follow- 
ing step is made compared with [8]: a "spherical" explosion is considered in an MHD-approx- 
imation. By means of appropriate averaging with respect to angles the two-dimensional prob- 
lem in the case of a uniform material is converted to a unidimensional problem. Within the 
scope of sector [9] approximation the case is studied of a nonuniform atmosphere. In order 
to solve these problems a second order of accuracy scheme is used for the method of large 
particles with introduction of artificial viscosity. In conclusion the question is touched 
upon of refining the approximation of ideal conductivity and the conclusions which emerge 
as a result of this. 

Approximate Reduction of the Two-Dimensional MHI)-Problem to a Spherically Symmetrical 
Problem. We turn to gas dynamic description of motion without discussing the question here 
of its justification under specific conditions. When concerning this description there are 
no unconditional contradictions, even natural ionization of a material is sufficient so that 
the conductivity is assumed to be infinite. Then a magnetic field H in a gas moving with 
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